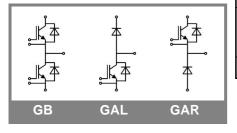


SEMITRANS[®] 3

IGBT Modules


SKM 200GB173D SKM 200GB173D1 SKM 200GAL173D SKM 200GAR173D

Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)

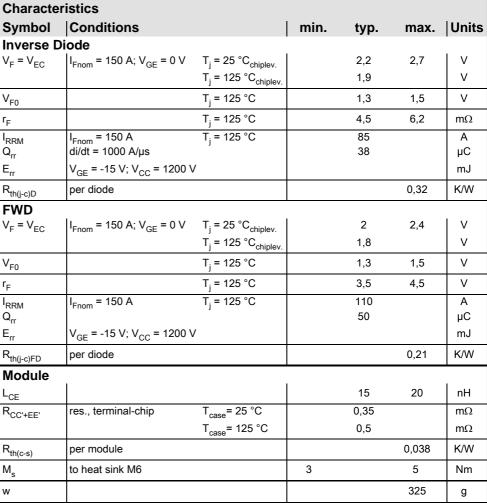
Typical Applications

- AC inverter drives on mains 575 - 750 $\rm V_{AC}$
- DC bus voltage 750 1200 V_{DC}
- Public transport (auxiliary syst.)
- Switching (not for linear use)

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specified				
Symbol	Conditions		Values	Units
IGBT				
V_{CES}	T _j = 25 °C		1700	V
I _C	T _j = 150 °C	T _{case} = 25 °C	220	Α
		T _{case} = 80 °C	150	Α
I _{CRM}	I _{CRM} =2xI _{Cnom}		300	Α
V_{GES}			± 20	V
t _{psc}	V_{CC} = 1200 V; $V_{GE} \le 20$ V;	T _j = 125 °C	10	μs
•	V _{CES} < 1700 V	•		
Inverse [Diode			
I _F	T _j = 150 °C	T _{case} = 25 °C	150	Α
		T _{case} = 80 °C	100	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	Α
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	1450	Α
Freewhe	eling Diode			•
I _F	T _j = 150 °C	T_{case} = 25 °C	230	Α
		T _{case} = 80 °C	150	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	Α
I _{FSM}	t _p = 10 ms; sin	T _j = 150 °C	2200	Α
Module				•
$I_{t(RMS)}$			500	Α
T _{vj}			- 40 + 150	°C
T _{stg}			- 40 + 125	°C
V _{isol}	AC, 1 min.		4000	٧

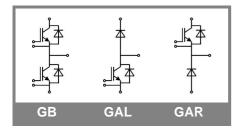
Characteristics $T_c = 25$ °C, unless otherwise specifie						ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 10 \text{ mA}$		4,8	5,5	6,2	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA
V_{CE0}		T _i = 25 °C		1,65	1,9	V
		T _j = 125 °C		1,9	2,15	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11,7	13,3	mΩ
		T _j = 125°C		17,3	19	mΩ
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		3,4	3,9	V
. ,		T _j = 125°C _{chiplev} .		4,5	5	V
C _{ies}				20		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		2		nF
C _{res}				0,55		nF
Q_G	VGE=0V/+20V			2000		nC
t _{d(on)}				580		ns
t _r `´	$R_{Gon} = 4 \Omega$	V _{CC} = 1200V		100		ns
E _{on}		I _{Cnom} = 150A		95		mJ
t _{d(off)}	$R_{Goff} = 4 \Omega$	T _j = 125 °C		750		ns
t_f		$V'_{GE} = \pm 15V$		40		ns
E_{off}				45		mJ
R _{th(j-c)}	per IGBT	_		•	0,1	K/W

IGBT Modules


SKM 200GB173D SKM 200GB173D1 SKM 200GAL173D SKM 200GAR173D

Features

- MOS input (voltage controlled)
- · N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- · Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)

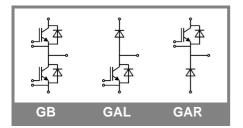

Typical Applications

- AC inverter drives on mains 575 -750 V_{AC}
- DC bus voltage 750 1200 V_{DC}
- Public transport (auxiliary syst.)
- Switching (not for linear use)

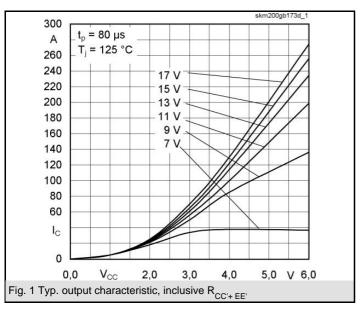
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

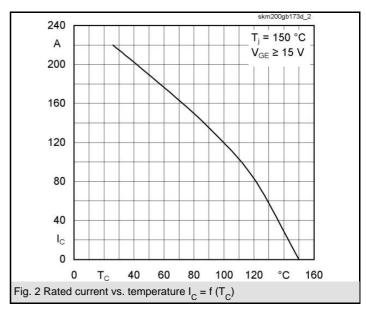
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

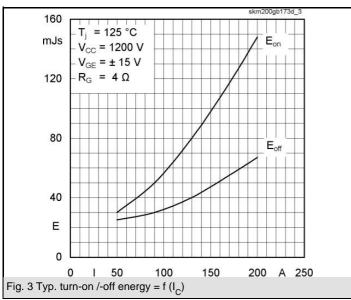
IGBT Modules

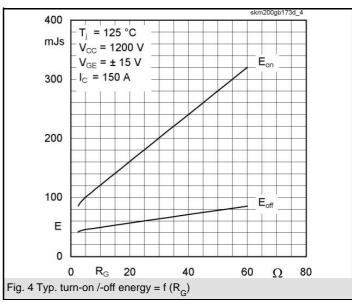

SKM 200GB173D SKM 200GB173D1 SKM 200GAL173D SKM 200GAR173D

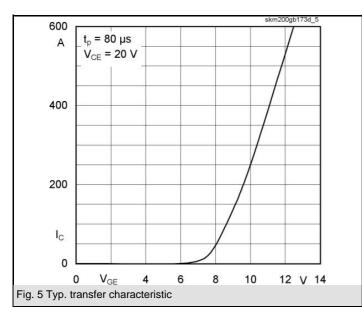
Fe	าลเ	11	r	2C

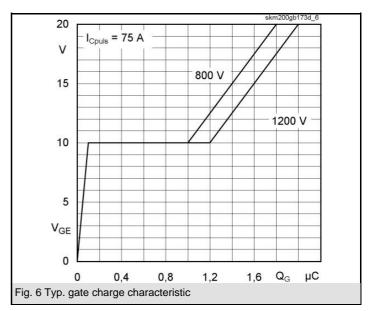

- MOS input (voltage controlled)
- N channel , Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)

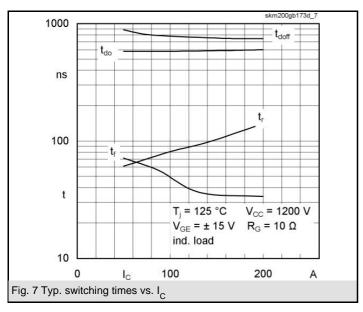

Typical Applications

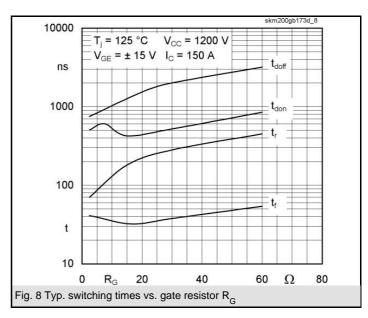

- AC inverter drives on mains 575 -750 V_{AC}
- DC bus voltage 750 1200 V_{DC}
- Public transport (auxiliary syst.)
- Switching (not for linear use)

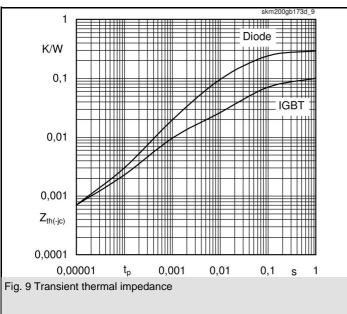


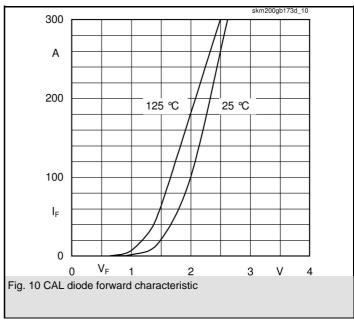

Z _{th}			
Symbol	Conditions	Values	Units
Z,,,,,,,,,			
Z R _i	i = 1	72	mk/W
R _i	i = 2	19	mk/W
R _i	i = 3	6,9	mk/W
Ri	i = 4	2,1	mk/W
tau _i	i = 1	0,0946	S
taui	i = 2	0,011	S
tau _i	i = 3	0,0011	S
tau _i	i = 4	0	s
Z _{th(j-c)D}	·		·
R _i	i = 1	230	mk/W
R_{i}	i = 2	70	mk/W
R_{i}	i = 3	17	mk/W
R_{i}	i = 4	3	mk/W
tau _i	i = 1	0,0839	s
tau _i	i = 2	0,0069	S
tau _i	i = 3	0,0028	s
tau _i	i = 4	0,0002	s

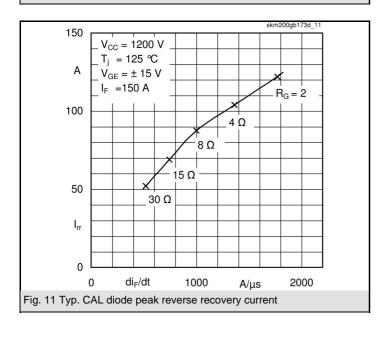


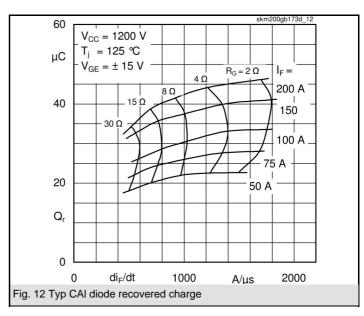


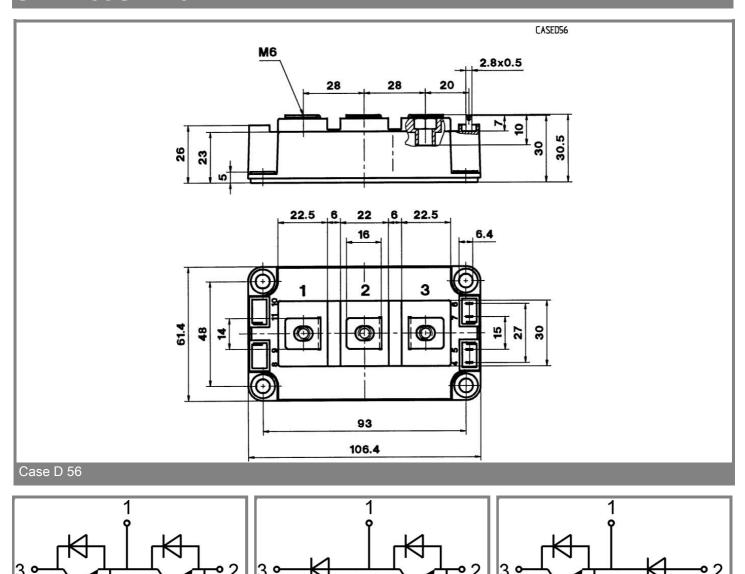












6 7 Case D 56

GB

GAL

Case D 57 (→ D 56)

GAR

Case D 58 (→ D 56)